Stability of Wave Patterns to the Inflow Problem of Full Compressible Navier-Stokes Equations
نویسندگان
چکیده
The inflow problem of full compressible Navier-Stokes equations is considered on the half line (0,+∞). Firstly, we give the existence (or non-existence) of the boundary layer solution to the inflow problem when the right end state (ρ+, u+, θ+) belongs to the subsonic, transonic and supersonic regions respectively. Then the asymptotic stability of not only the single contact wave but also the superposition of the boundary layer solution, the contact wave and the rarefaction wave to the inflow problem are investigated under some smallness conditions. Note that the amplitude of the rarefaction wave can be arbitrarily large. The proofs are given by the elementary energy method.
منابع مشابه
Asymptotic Behavior of Solutions to the Full Compressible Navier-stokes Equations in the Half Space
Abstract. The one-dimensional motion of compressible viscous and heat-conductive fluid is investigated in the half space. By examining the sign of fluid velocity prescribed on the boundary, initial boundary value problems with Dirichlet type boundary conditions are classified into three cases: impermeable wall problem, inflow problem and outflow problem. In this paper, the asymptotic stability ...
متن کاملA Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملA Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملSpectral Stability of Noncharacteristic Isentropic Navier–Stokes Boundary Layers
Building on the work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or shock-like, boundary layers of the isentropic compressible Navier–Stokes equations with γ -law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our analytical results include convergence of the Evans function in the s...
متن کاملNonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient
We prove nonlinear stability of viscous shock wave of arbitrary amplitudes to a one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscosity. Under the assumption that the viscous coefficient is given as a power function of density, any viscous shock wave is shown to be nonlinear stable for small initial perturbations with integral zero. In contrast to previo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2009